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Abstract

A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea

is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a

point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The

mathematical formulation relies on the boundary-integral representation of the potential flow established far from the

basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The

boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure

distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in

the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The

numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of

physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the

membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round

windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a

traveling wave packet that eventually disappears at the helicotrema.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The vibration of the eardrum due to external sound waves induces oscillations of the ossicular chain of the human

middle ear consisting of three hinged bones: the malleus, the incus, and the stapes, as illustrated schematically in Fig. 1.

The ossicular chain begins at the malleus, which is attached to the eardrum, and ends at the stapes footplate, which

vibrates through the oval window into the inner ear. The amplitude of vibration is on the order of nanometers. The

motion of the stapes footplate transmits pressure waves into the fluid-filled cochlea and thus activates the hearing

nerves.

The snail-shaped human cochlea is a spiral tunnel with approximate radius 1mm and approximate length 35mm,

housed in the temporal bone. The tunnel is divided along its length into three compartments: the upper scala vestibuli

originating from the oval window, the lower scala tympani ending at the round window, and the intermediate scala

media or cochlear duct, as shown in Fig. 1. The scala vestibuli and scala tympani are filled with perilymphatic fluid,

which is a typical extracellular fluid with ionic composition comparable to that of cellular plasma. The cochlear duct is
e front matter r 2007 Elsevier Ltd. All rights reserved.

uidstructs.2007.08.006

ess: cpozrikidis@ucsd.edu

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2007.08.006
mailto:cpozrikidis@ucsd.edu


ARTICLE IN PRESS

Ear canal

Incus

Stapes

Tympanic membrane

Round window

Outer ear

Inner ear

Malleus

Semicircular canals

Vestibule

Basilar membrane

Cochlea

Oval window

Middle ear

Basilar membrane

Vestibular membrane

SV

ST

(b)(a)

(c)

Fig. 1. (a) Schematic illustration of the outer, middle, and inner ear. The cochlea spirals outward from the plane of the illustration. The

edges of the basilar membrane outlined with dashed lines are supported by the bony shelves. The width of the basilar membrane

increases with distance into the cochlea. The basilar strip remains parallel to the plane of the illustration as it follows the cochlear turns.

(b) Cross-section of the cochlear duct along the plane indicated with the bold faced, broken line in (a), indicating the scala vestibuli

(SV) and the scala tympani (ST). The cochlear duct and vestibule contain endolymphatic fluid, whereas the scala vestibuli and scala

tympani contain perilymphatic fluid. (c) Pictorial depiction of the snail-like cochlea generated using a mathematical expression and

Matlab graphics. In the physical model considered in this paper, the cochlea is untwisted into a two-dimensional partitioned channel,

yielding a two-dimensional configuration.
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filled with endolymphatic fluid whose constitution is unlike that found elsewhere in the body. The three compartments

meet at an opening located at the cochlea apex, called the helicotrema, across which perilymphatic fluid in the scala

vestibuli and scala tympani communicate. The scala media is a narrow triangular duct occupying approximately 8% of

the cochlear volume. It is separated from the scala vestibuli by the vestibular (Reissner’s) membrane, and from the scala

tympani by the basilar membrane. These membranes are elongated strips following the turns of the cochlea and

supported on either side by the bony shelves consisting of the spiral lamina and spiral ligament. The anatomical features

and dimensions cited here are specific to the human ear. Other mammals have different ossicular constructions, and

only mammalian cochleas are coiled.

The organ of Corti is a sophisticated biological sensor attached to the basilar membrane and covered by the firmly

fixed tectorial membrane. Vibrations of the basilar membrane due to pressure waves traveling through the cochlea

induce rotational motions of the stereocilia pinned on the hair cells contained in the organ of Corti, and thereby open

ion channels that activate the hearing nerves in a process described as mechanotransduction. The basilar membrane is

narrow and stiff at the window end with a width of approximately 150mm, and wide and flexible at the apical end with a

width of approximately 560mm. Although the membrane widens toward the helicotrema, the duct becomes more
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narrow. The non-uniformity of the membrane stiffness is responsible for different regions vibrating at different

frequencies along the length of the cochlea. The beginning of the membrane near the stapes vibrates at high frequencies,

while the apical end vibrates at low frequencies. The membrane thus acts as a spatial frequency analyzer. Consequently,

local injury or acoustic trauma results in hearing loss in a certain frequency bandwidth.

Modeling the function of the cochlea has a long record in the medical, physiological, engineering, and mathematical

literature. Theoretical studies date back to the pioneering work of Helmholtz who treated the basilar membrane as a

tapered elastic sheet, ignoring the effect of fluid flow. In most theoretical studies, the cochlea is modeled as a two-

compartment system where the scala vestibuli and the scala tympani are separated by the basilar membrane. Because of

the small thickness and low resistance to bending, Reissner’s membrane is assumed to be convected passively

with the flow. Early one-dimensional transmission models either neglected or adopted heuristic approximations

for the fluid pressure on either side of the membrane. Phenomenological models have emulated the action of the

membrane in terms of a one-dimensional impedance which either complements or is embedded in the equation of

fluid motion.

Because of the prevailing opinion that the spiral shape of the cochlea is not acoustically significant [e.g., Viergever

(1978), Loh (1983), Steele and Zais (1985), Manoussaki and Chadwick (2000)], the vast majority of theoretical models

have addressed the function of the unwrapped cochlea mapped to the rectangular partitioned channel. However, recent

studies have shown that the cochlear curvature enhances the radial shearing in the region of the basilar membrane

where low-frequency sounds are analyzed (Cai et al., 2005; Manoussaki et al., 2006). Since viscous fluid stresses are

confined inside narrow boundary layers lining the cochlear walls and basilar membrane, the fluid motion is typically

described in terms of the equations of potential flow with the pressure gradient acting as the driving force, as will be

discussed in Section 2. Tackling the problem in the more general context of Navier–Stokes flow requires the resolution

of thin boundary layers and demands exorbitant computational time (Givelberg and Bunn, 2003).

Numerical solutions of two-dimensional cochlear models were presented by several authors including Lesser and

Berkley (1972), Viergever and Kalker (1975), Viergever (1977), Allen (1977), Sondhi (1978), Allen and Sondhi (1979),

Neely (1981), Kagawa et al. (1987), Diependaal and Viergever (1989), and Beyer (1992). Prior to Lesser and Berkley

(1972), all authors had assumed that the fluid motion is one-dimensional. Lighthill (1981) used energy-flow arguments

to identify the necessary key features of mathematical models. Numerical solutions of three-dimensional cochlear

models were presented by Taber and Steele (1981), Kagawa et al. (1987), Kolston and Ashmore (1996), Parthasarathi et

al. (2000) and Givelberg and Bunn (2003). The governing equations were solved using integral formulations, finite

difference, finite element, and immersed boundary methods. Kagawa et al. (1987) performed three-dimensional

simulations of the fluid motion inside a spiraling cochlea and confirmed that the results are in qualitative agreement

with those of simpler two-dimensional geometries.

In this paper, a two-dimensional model is proposed that captures the essential features of vibration of the basal

membrane and can be tackled accurately and efficiently by elementary numerical methods. Conceptually, the model is

similar to that considered by Neely (1981) and earlier authors, with some differences. The main idea is to represent the

flow due to the vibration of the stapes footplate and membrane of the round window in terms of a point source and a

point sink, and then solve for the cochlear pressure while simultaneously computing the oscillations of the basilar

membrane. The problem formulation relies on the boundary-integral method for the potential flow established far from

the basilar membrane and cochlea side walls. One key objective of the boundary-integral formulation is the derivation

of an integral equation defined over the domain of interest alone, in this case the basilar membrane. This is

accomplished by using of a point source and a point sink, and then introducing Green’s functions of the second kind

(Neumann functions) to satisfy the no-penetration condition over the surrounding surfaces. For simple geometries, the

Green’s function is available in analytical form. This approach circumvents a great deal of numerical noise due to the

discretization of cochlear surfaces, including corners and regions where discontinuous velocities are specified. The end-

result is a system of integral equations for the membrane vibration amplitude and pressure distribution on the upper or

lower side of the membrane.

In Section 2, the hydrodynamics of the cochlea is summarized, and the governing differential equations are derived. A

general integral formulation employing the point source/sink model for a two-dimensional cochlea with arbitrary

geometry is discussed in Section 3. In Section 4, a more specific model consisting of two rectangular compartments is

considered. Using the Neumann function of Laplace’s equation for a semi-infinite strip, weakly singular integral

equations with logarithmic kernels and hypersingular integral equations defined over the length of the basilar

membrane are derived using alternative formulations. Allen (1977), Sondhi (1978), and Allen and Sondhi (1979)

developed similar formulations based on a serial model proposed by Lesser and Berkley (1972), as discussed in Section

5. In their model, the two cochlear compartments are unwrapped and put serially next to one another as if they were

hinged at the helicotrema. In Section 6, a more general formulation applicable to a closed cochlea in the presence of the

helicotrema is derived in terms of a composite Green’s function generated by a point source and a point sink with equal
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and opposite strengths in a rectangular domain. In Section 7, numerical methods for solving the derived integral

equations are discussed.

In Section 8, numerical solutions are presented and discussed in the frequency domain, and in Section 9, the initial-

value problem is considered where the flow is driven by an arbitrary impulse. The transient response of the basilar

membrane is examined, and the establishment of a periodic oscillation under constant sinusoidal forcing is described.

The results show that the transient motion exhibits an interesting dynamics that complements the periodic motion

observed under harmonic excitation.
2. Cochlear hydrodynamics

We consider oscillatory flow in the cochlea generated by the harmonic vibration of the stapes footplate with

amplitude � and frequency f, in the human physiological range of 20–20 000Hz. Under physiological conditions, � is on
the order of nanometers. The vibration induces perilymphatic flow, and the associated pressure field transmits pressure

waves into the cochlea that activate the sensory hair cells located in the organ of Corti.

The perilymph can be assumed to be an incompressible Newtonian fluid whose motion is governed by the

Navier–Stokes equation

r
qu
qt
þ u � ru

� �
¼ �rpþ mr2u, (1)

and the continuity equation

r � u ¼ 0, (2)

where u is the fluid velocity, p is the fluid pressure, r is the fluid density, and m is the fluid viscosity [e.g.,

Pozrikidis (1997)]. The assumption of incompressibility is justified at all but the highest frequencies in the physiological

range. At 20 kHz, the wavelength of the longitudinal acoustic wave is around 75mm, which is only twice the length of

the cochlea.

The magnitude of the velocity of the flow induced by the vibration of the stapes footplate is V ¼ o�, and the

characteristic time scale is 1=o, where o ¼ 2pf is the angular frequency. The volumetric flow rate (volume velocity)

induced by the footplate displacement is the product of the displacement velocity, V, and footplate cross-sectional area,

A ’ 3:2mm2. The Reynolds number of the flow expresses the relative importance of inertial-convective and viscous

fluid forces,

Re �
rVL

m
¼

ro�L
m

, (3)

where L ’ 3:5 cm is the length of the basilar membrane. The dimensionless frequency parameter

b �
roL2

m
(4)

expresses the relative importance of inertial-unsteady and viscous forces. The Strouhal number expresses the relative

importance of inertial-unsteady and inertial-acceleration forces,

St �
b
Re
¼

fL

V
¼

L

�
. (5)

Because the amplitude of the stapes footplate vibration is small, �5L, the Strouhal number is high, and the

Navier–Stokes equation may be linearized to yield the unsteady Stokes equation

r
qu
qt
¼ �rpþ mr2u. (6)

To study pure-tone hydrodynamics, we set

u ¼ U expðiotÞ; p ¼ P expðiotÞ, (7)

where i is the imaginary unit, U is the velocity amplitude, and P is the pressure amplitude. Substituting in the unsteady

Stokes equation we derive the complex Brinkman equation,

iorU ¼ �rPþ mr2U, (8)
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complemented by the continuity equation for an incompressible fluid,

r �U ¼ 0, (9)

to be solved subject to appropriate boundary conditions. Using the incompressibility condition, we find that the

pressure is a harmonic function,

r2P ¼ 0. (10)

At high frequencies, the flow is comprised a thin Stokes boundary layer and an outer potential flow. The thickness of

the Stokes boundary layer is

d ¼

ffiffiffiffi
n
o

r
¼

ffiffiffiffiffiffiffiffi
n

2pf

r
, (11)

where n ¼ m=r is the kinematic viscosity of the fluid. Taking n ¼ 1mm2=s, we find that, as the frequency f increases from

20 to 20 000Hz, d decreases from 0.089 to 0.0028mm, and is thus smaller than the radius of the cochlear duct

ð�1:0mmÞ. The flow outside the boundary layer is governed by the simplified equation

r
qu
qt
¼ �rp. (12)

Substituting (7) and rearranging, we find

U ¼
i

or
rP, (13)

which shows that the velocity oscillation lags the pressure oscillation by �90�. The no-penetration boundary condition

requires

n � rP ¼ �iorn �Uw (14)

at the edge of the Stokes boundary layer, where Uw is the wall velocity and n is the unit normal vector. This expression

shows that, given the amplitude of the footplate velocity, the amplitude of the pressure increases linearly with

frequency.

In the remainder of this paper, we consider the potential flow established in the cochlea outside the Stokes boundary

layer. The precise effect of the fluid viscosity was discussed by several previous authors using asymptotic and numerical

methods [e.g., LeVeque et al. (1988), Cai et al. (2005)]. In the potential-flow model, viscous dissipation is implemented

through a damping coefficient in the membrane response function.
3. A two-dimensional cochlear model

Fig. 2(a) illustrates a two-dimensional model that arises by untwisting the spiral cochlea around the y axis. The cross-

section of the basilar membrane, shown as a bold line along its length, separates the scala vestibuli (upper

compartment) from the scala tympani (lower compartment). The xy plane in Fig. 2(a) is perpendicular to the plane of

the schematic illustration in Fig. 1(b). The x axis points along the length of the basilar membrane, and the y axis points

normal to the basilar membrane.

In the proposed theoretical model, the vibration of the stapes footplate is mediated by an oscillatory point source of

strength (volume velocity) Q. The induced pressure and velocity amplitudes in the xy plane are described by

Psrc ¼ iorQGðx; xsrcÞ; Usrc ¼ �QrGðx;xsrcÞ, (15)

where Gðx; xsrcÞ is the Green’s function of the two-dimensional Laplace equation representing the potential of the flow

due to a point sink; the free-space Green’s function is Gðx; x0Þ ¼ �ð1=2pÞ log jx� x0j. The strength of the point source

is Q ¼ o�d, where � is the amplitude of the stapes footplate displacement, and d is the effective footplate diameter. It is

sensible to approximate d ¼ A=b, and thus obtain Q ¼ o�A=b, where A the stapes footplate area and b is the cochlea

channel width. Similarly, the action of the round window is represented by an oscillating point sink with strength �Q.

The induced pressure and velocity fields are

Psink ¼ �iorQGðx� xsinkÞ; Usink ¼ QrGðx� xsinkÞ. (16)

Note that the strength of the point sink is equal in magnitude and opposite in sign to that of the point source, as the

incompressible fluid cannot escape through side walls. The no-penetration boundary condition requires that the normal
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Fig. 2. (a) A two-dimensional model arises by untwisting the spiral cochlea. The action of the stapes footplate and round window are

emulated, respectively, by a point source and a point sink. (b) Boundary contours for developing the boundary-integral formulation;

the contour C1 is drawn as a solid line, and the contour C2 is drawn as a broken line.
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component of the velocity is zero, and thus the normal derivative of the pressure vanishes around the cochlear walls,

n � rP ¼ 0.

In most previous models, the oval and round windows are assumed to occupy, respectively, the upper and lower

portions of the left wall separated by the basilar membrane, both vibrating in a piston-like fashion with a uniform

velocity [e.g., Kagawa et al. (1987)].

The transverse displacement of the basilar membrane is described by the function Z ¼ f ðl; tÞ, where l is the arc length

along the undisturbed position of the basilar membrane, and Z is the normal distance, as shown in Fig. 2. For

oscillatory flow,

f ðl; tÞ ¼ F ðlÞ expðiotÞ. (17)

A real amplitude F ðlÞ describes a stationary wave, and a complex amplitude F ðlÞ describes a traveling wave. Requiring

the kinematic condition

qf

qt
¼ n � u, (18)

at Z ¼ 0, we find

ioF ¼
i

or
qP

qZ
(19)

at Z ¼ 0, where the normal pressure derivative is evaluated on either side of the basilar membrane. Rearranging, we find

qP

qZ
¼ ro2F . (20)

If we assume that fluid does not enter the helicotrema, we may require area conservation in the upper or lower

compartment expressed by

Q expðiotÞ ¼ �
d

dt

Z
f ðl; tÞdl, (21)
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where the integral is computed along the undisturbed position of the basilar membrane. Substituting (17) and

simplifying, we derive the integral constraintZ
F ðlÞdl ¼ i

Q

o
. (22)

Next, we balance the pressure on either side of the basilar membrane with the restoring elastic and viscous membrane

tension and viscous fluid stresses, finding

½p�ðlÞ ¼ �Cðf ; f ll ; f llll ; f t; f ttÞ, (23)

where ½p� � pðZ ¼ 0þÞ � pðZ ¼ 0�Þ denotes the pressure jump across the membrane, C is a membrane response

function, and a subscript denotes a derivative with respect to the corresponding variable. The second and fourth

derivatives with respect to l arise by modeling the membrane as a von Kármán elastic plate [e.g., Allen and Sondhi

(1979)]. The second derivative with respect to time expresses the effect of the membrane inertia.

3.1. Membrane response function

Several membrane response functions have been employed by previous authors. One possible choice is

C ¼ s0e
�lðl�lrÞðf þ bf tÞ, (24)

where s0 is a constant coefficient, l is a viscous decay coefficient, lr is a reference position, and b is a

dissipation coefficient expressing the effect of fluid and membrane viscosities (LeVeque et al., 1985, 1988).

In this model, the membrane mass is neglected on the observation that draining the cochlear fluid drastically

alters the response of the basilar membrane by eliminating the spatial resonance discussed in the Introduction.

An alternative interpretation is that the density of the cochlea fluid plays an important role. In fact, our computations

will show that the membrane mass is an important determinant of the membrane vibration. Substituting the preceding

expressions, we obtain

½P� ¼ �s0e
�lðl�lrÞð1þ iobÞF ðlÞ. (25)

More generally, we write

½P� ¼ �Fðl;oÞFðlÞ, (26)

where Fðl;oÞ is a position- and frequency-dependent transfer function, and Fðl;oÞ=ðioÞ is the specific acoustic

impedance. In the case of (25),

Fðl;oÞ ¼ s0e
�lðl�lrÞð1þ iobÞ. (27)

A general membrane response function is

C ¼ cðlÞf þ kðlÞf t þmðlÞf tt, (28)

corresponding to

Fðl;oÞ ¼ cðlÞ þ iokðlÞ � o2mðlÞ, (29)

where cðlÞ is the membrane stiffness, kðlÞ is the viscous resistance coefficient, and mðlÞ is the membrane areal mass

density [e.g., Kagawa et al. (1987)]. These authors found that the membrane stiffness and mass determine the peak

position of the frequency response, while the viscous resistance determines the sharpness of the response peak.

The total pressure field in the cochlea is given by the linear superposition

P ¼ Psrc þ Psnk þ P0, (30)

or

P ¼ iorQðGðx; xsrcÞ � Gðx; xsnkÞÞ þ P0, (31)

where the nonsingular pressure, P0, is introduced to satisfy the boundary conditions over the cochlear walls. The

problem has been reduced to solving Laplace’s equation

r2P0 ¼ 0, (32)
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in the scala vestibuli and scala tympani, and simultaneously computing the membrane amplitude function, F ðlÞ, subject

to the no-penetration condition

n � rP0 ¼ �n � rðPsrc þ PsnkÞ ¼ �iorQn � rðGðx; xsrcÞ � Gðx; xsnkÞÞ (33)

around the cochlear walls. The kinematic condition at the basilar membrane requires

qP0

qZ
¼ ro2F �

qPsrc

qZ
�

qPsnk

qZ
¼ ro2F � iroQ

q
qZ
ðGðx; xsrcÞ � Gðx; xsnkÞÞ, (34)

and the dynamic condition requires

½P0� ¼ �Fðl;oÞFðlÞ, (35)

evaluated at Z ¼ 0.

3.2. Boundary-integral formulation

Several boundary-integral formulations are possible reflecting different various geometrical simplifications

at the helicotrema. In one approach, the presence of the helicotrema is altogether neglected, as shown in Fig. 2(b).

Consider a point x0 inside the scala vestibuli. Green’s third identity provides us with the boundary-integral

representation

P0ðx0Þ ¼ �

Z
C1 ;B

Gðx; x0ÞnðxÞ � rP0ðxÞdlðxÞ þ

Z
C1 ;B

P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (36)

where B stands for the basilar membrane, C1 stands for the cochlear walls bounding the scala vestibuli drawn with the

solid line in Fig. 2(b), Gðx; x0Þ is the free-space Green’s function of Laplace’s equation in two dimensions, and the

normal vector n over C1 and B points into the scala vestibuli, as illustrated in Fig. 2(b) [e.g., Pozrikidis, 2002]. The first

integral on the right-hand side of (36) is the single-layer potential, and the second integral is the double-layer potential

of potential flow.

Similarly, we write the reciprocal relation

0 ¼ �

Z
C2 ;B

Gðx; x0ÞnðxÞ � rP0ðxÞdlðxÞ þ

Z
C2 ;B

P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (37)

where C2 stands for the cochlear walls bounding the scala tympani drawn with the broken line in Fig. 2(b), and the

normal vector n points into the scala tympani, as illustrated in Fig. 2(b). Adding these equations and observing that the

normal component of the velocity and therefore the normal component of the pressure gradient is continuous across B,

we obtain

P0ðx0Þ ¼ �

Z
C1 ;C2

Gðx;x0ÞnðxÞ � rP0ðxÞdlðxÞ þ

Z
C1 ;C2

P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ

þ

Z
B

½P0�ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (38)

where the normal vector over B in the last integral points into the scala vestibuli. Exactly the same expression arises

when the point x0 lies inside the scala tympani.

Now we take the limit of (36) as the field point x0 approaches C1 or B, and note that the double-layer potential

undergoes a discontinuity due to the distributed potential dipoles. The limiting value of the double-layer potential can

be expressed in terms of the readily computable principal value using the integral identity

lim
x!C1 ;B

Z
C1 ;B

P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ ¼
1

2
P0ðx0Þ þ P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (39)

where denotes the principal value integral [e.g., Pozrikidis (2002)]. Thus, we find

1

2
P0ðxSV

0 Þ ¼ �

Z
C1 ;B

Gðx; x0ÞnðxÞ � rP0ðxÞdlðxÞ þ P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (40)
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and SV denotes the scala vestibuli. Taking also the limit of (38) as x0 tends to the basilar membrane and following a

similar procedure, we find

P0ðxSV
0 Þ ¼ �

Z
C1 ;C2

Gðx; x0ÞnðxÞ � rP0ðxÞdlðxÞ þ

Z
C1 ;C2

P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ

þ
1

2
½P0�ðx0Þ þ ½P0�ðxÞnðxÞ � rGðx; x0ÞdlðxÞ. (41)

Finally, taking the limit of (38) as x0 tends to C2, we find

1

2
P0ðxST

0 Þ ¼ �

Z
C1 ;C2

Gðx; x0ÞnðxÞ � rP0ðxÞdlðxÞ þ P0ðxÞnðxÞ � rGðx; x0ÞdlðxÞ

þ

Z
B

½P0�ðxÞnðxÞ � rGðx; x0ÞdlðxÞ, (42)

where ST denotes the scala tympani. Implementing the boundary conditions, we derive a system of integral equations

for the pressure distribution along the cochlea walls and membrane shape function, FðlÞ.

The complexity of this formulation motivates the development of rectangular cochlear models reflecting

different physical assumptions at the downstream end located at the helicotrema, discussed in the next

three sections.
4. Semi-infinite cochlear model

Fig. 3 illustrates a rectangular cochlear model with l ¼ x and Z ¼ y. The upper wall is located at y ¼ a, the lower wall

is located at y ¼ �a, the basilar membrane is located at y ¼ yb, the left vertical wall is located at x ¼ 0, and the right

vertical wall is located at x ¼ L. The total height of the cochlear channel is h ¼ 2a. The point source and point sink are

located at arbitrary positions near the left vertical wall. Typical physiological values are a ¼ 0:1 cm, h ¼ 0:2 cm and

L ¼ 3:5 cm, corresponding to aspect ratio L=h ¼ 17:5.
To model the flow, we use the boundary-integral representation discussed in Section 3. Since both pressure

and velocity decay with distance into the cochlea at sufficiently high frequencies, the integral along the far side

of the cochlea near the helicotrema can be neglected to a leading-order approximation, leading us to the semi-infinite

cochlea model.

To further simplify the analysis, we introduce a Green’s function of the second kind, also called a Neumann function,

that satisfies the no-penetration condition nðxÞ � rGðx; x0Þ ¼ 0 when x is on the left, upper, and lower side of the cochlea

wall. Physically, the Green’s function represents the velocity potential (pressure field) due to a point sink located at the

point x0 in a semi-infinite strip confined between two horizontal walls located at y ¼ w1, y ¼ w24w1, and a vertical wall
Point sink

Point source Basilar membrane

L

y

x

a

a

h

Fig. 3. Illustration of a two-dimensional rectangular cochlea model. The longitudinal cross-section of the basilar membrane is drawn

as a bold horizontal line.
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Fig. 4. (a) Green’s function in a semi-infinite strip confined between three walls representing the pressure field due to a point sink of

unit strength. (b) Pressure field due to a point source/sink pair in a semi-infinite strip. The fields become infinite at the singular points.
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located at x ¼ w3. In our case, w1 ¼ �a, w2 ¼ a, and w3 ¼ 0. Using the method of images, we find

Gw1 ;w2 ;w3
ðx; x0Þ ¼ �

1

4p
log cosh

pðx� x0Þ

h
� cos

pðy� y0Þ

h

� �
� cosh

pðx� x0Þ

h
� cos

pðyþ y0 � 2w1Þ

h

� �� �
�

1

4p
log cosh

pðxþ x0 � 2w3Þ

h
� cos

pðy� y0Þ

h

� ��
� cosh

pðxþ x0 � 2w3Þ

h
� cos

pðyþ y0 � 2w1Þ

h

� ��
, (43)

where h ¼ w2 � w1 [e.g., Pozrikidis (2002)]. It can be confirmed by direct substitution that this Green’s function satisfies

the boundary conditions qGðx;x0Þ=qy ¼ 0 when y ¼ w1;w2, and qGðx; x0Þ=qx ¼ 0 when x ¼ w3. The first logarithmic

term on the right-hand side of (43) represents the image system for the two horizontal parallel walls, and the second

logarithmic term represents the reflection of the image system with respect to the vertical wall. Fig. 4(a) shows a graph

of the Green’s function, revealing the expected linear increase with distance along the strip corresponding to a uniform

flow with a flat velocity profile. Fig. 4(b) shows the c potential field due to a point source and a point sink with equal

strengths, revealing a rapid exponential decay with distance along the strip. For convenience, the subscripts w1;w2;w3

will be suppressed in the following discussion.

With this Green’s function, the integral representations (36) and (38) simplify to

P0ðx0Þ ¼ �

Z L

0

Gðx; x0Þ
qP0

qy
ðxÞdxþ

Z L

0

P0ðxÞ
qGðx; x0Þ

qy
dx (44)

and

P0ðx0Þ ¼

Z L

0

½P0�ðxÞ
qGðx; x0Þ

qy
dx, (45)

where the integrals are computed along the length of the basilar membrane located at y ¼ yb. Eq. (45) expresses the

pressure field as a distribution of potential dipoles oriented normal to the undisturbed membrane.
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Taking the limit of (44) and (45) as the field point x0 tends to the basilar membrane from the upper side, and

expressing the limit in terms of the principal value using (39), we find

1

2
P0ðx0Þ ¼ �

Z L

0

Gðx; x0Þ
qP0

qy
ðxÞdxþ P0ðxÞ

qGðx; x0Þ

qy
dx (46)

and

P0ðx0Þ ¼
1

2
½P0�ðx0Þ þ ½P0�ðxÞ

qGðx; x0Þ

qy
dx. (47)

Next, we substitute in (46) the kinematic boundary condition (34), and in (47) the dynamic boundary condition (35),

and find

1

2
P0ðx0Þ ¼ � ro2

Z L

0

Gðx; x0ÞF ðxÞdxþ iorQ

Z L

0

Gðx; x0Þ
q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx

þ P0ðxÞ
qGðx; x0Þ

qy
dx (48)

and

P0ðx0Þ ¼ �
1

2
Fðx0;oÞF ðx0Þ � Fðx;oÞF ðxÞ

qGðx; x0Þ

qy
dx. (49)

The last two equations are to be solved for the amplitude, F ðxÞ, and for the pressure distribution on the upper surface of

the basilar membrane, P0ðxÞ.

Now substituting Q ¼ o�d and rearranging, we derive the dimensionless forms of (48) and (49),Z L̂

0

Gðx; x0ÞzðxÞdx̂þ
1

2
P̂
0
ðx0Þ � P̂

0
ðxÞ

qGðx; x0Þ

qŷ
dx̂ ¼ i

Z L̂

0

Gðx; x0Þ
q
qŷ
ðGðx; xsrcÞ � Gðx;xsnkÞÞd x̂ (50)

and

1

2
cFðx0;oÞzðx0Þ þ F̂ðx;oÞzðxÞ

qGðx; x0Þ

qŷ
dx̂þ P̂

0
ðx0Þ ¼ 0, (51)

where x̂ ¼ x=L, ŷ ¼ y=L, L̂ ¼ L=L, and L is a specified length scale. We have introduced the dimensionless

membrane amplitude, pressure, and response function,

z ¼
FL

�d
; P̂

0
�

P0

ro2�d
; F̂ �

F

ro2L
. (52)

4.1. Membrane at the channel centerline

Additional simplifications occur when the membrane is located at the center of the channel, yb ¼ 0, as the derivative

of the Green’s function inside the integral in (49) is zero, yielding

P0ðx0Þ ¼ �
1

2
Fðx0;oÞF ðx0Þ, (53)

which merely expresses a pressure anti-symmetry condition. Substituting this expression in (48), we obtain an integral

equation of the second kind for F with a weakly singular (logarithmic) kernel,

1

4
Fðx0;oÞF ðx0Þ ¼ ro2

Z L

0

Gðx; x0ÞF ðxÞdx� iorQ

Z L

0

Gðx; x0Þ
q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx. (54)
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The associated dimensionless form isZ L̂

0

Gðx; x0Þzðx̂Þdx̂�
1

4
F̂ðx0;oÞzðx0Þ ¼ i

Z L̂

0

Gðx; x0Þ
q
qŷ
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx̂. (55)

Evaluating (43) for w1 ¼ �a;w2 ¼ a, w3 ¼ 0, h ¼ 2a, y ¼ 0 and y0 ¼ 0, and simplifying, we find

Gðx; x0Þ ¼ �
1

2p
log sinh

pðx� x0Þ

2a
sinh

pðxþ x0Þ

2a

���� ����. (56)

For x�a and x0ba, we obtain

Gðx; x0Þ ’
1

p
log 2�

x0

2a
, (57)

and thusZ L

0

Gðx; x0Þ
q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx ’

1

p
log 2�

x0

2a
, (58)

which shows that the right-hand side of the integral equation grows linearly in x0.

It is reassuring to confirm that the integral formulations remain unchanged when the Green’s function is shifted by an

arbitrary constant. Referring to (48), we find that this requires

ro2

Z L

0

F ðxÞdx ¼ iorQ

Z L

0

q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx. (59)

The integral on the right-hand side is equal to unity, yieldingZ L

0

FðxÞdx ¼ i
Q

o
or

Z L

0

zðxÞdx̂ ¼ i, (60)

in agreement with (22). This identity confirms the consistency of the boundary-integral formulation.

4.2. Hypersingular formulation

In an alternative approach, we take the derivative of the general equation (45) with respect to y0, finding

qP0

qy0
ðx0Þ ¼

Z L

0

½P0�ðxÞ
q2Gðx;x0Þ

qyqy0
dx. (61)

Now we take the limit as x0 tends to the basilar membrane and substitute the kinematic and dynamic boundary

conditions (34) and (35) to derive a hypersingular integral equation for the shape function, F,

Fðx;oÞF ðxÞ
q2Gðx; x0Þ

qyqy0
dxþ ro2F ðx0Þ ¼ iroQ

q
qy
ðGðx0; xsrcÞ � Gðx0; xsnkÞÞ, (62)

where H denotes the Hadamard or finite value part of the singular integral, properly defined in terms of the

aforementioned limit. The associated dimensionless form is

F̂ðx;oÞzðxÞ
q2Gðx; x0Þ

qŷqŷ0
dx̂þ zðx0Þ ¼ i

q
qŷ
ðGðx0; xsrcÞ � Gðx0; xsnkÞÞ. (63)

This equation applies independent of the position of the basilar membrane between the upper and lower walls.

The term ‘‘hypersingular’’ describes the apparent 1=r2 singularity of the kernel of the integral equation, arising by

twice differentiating the logarithmic Green’s function. As y0 ! 0, the kernel of the integral equation reduces to that of

the free-space Green’s function,

q2Gðx; x0Þ

qŷqŷ0
’ Yðx; x0; y0Þ �

1

2p
ðx� x0Þ

2
� y20

½ðx� x0Þ
2
þ y20�

2
. (64)
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Naively setting y0 ¼ 0 yields an intractable integral with respect to x. Instead, we perform the integration with respect

to x and then take the limit y0 ! 0. To demonstrate the process, we compute the definite integral

I ¼

Z x0þB

x0�A

Yðx; x0; y0Þdx ¼
1

2py0

Z B=y0

�A=y0

o2 � 1

ð1þ o2Þ
2
do ¼ �

1

2py0

o
1þ o2

� �B=y0

�A=y0

. (65)

Now taking the limit y0 ! 0, we derive the finite part

I ¼ �
1

2p
1

B
þ

1

A

� �
. (66)

To compute the integral of the hypersingular integral of a general Green’s function, we remove the singularity by

writingZ x0þB

x0�A

q2Gðx; x0Þ

qŷqŷ0
dx ¼

Z x0þB

x0�A

q2Gðx; x0Þ

qŷqŷ0
�

1

2pðx� x0Þ
2

� �
dx�

1

2p
1

B
þ

1

A

� �
. (67)

The first integral on the right-hand side is nonsingular and can be computed by standard numerical methods.
5. Serial cochlear model

Lesser and Berkley (1972) proposed a serial rectangular cochlear model bounded by the stapes footplate located at

x ¼ 0, the round window located at x ¼ 2L, the basilar membrane located at y ¼ 0, and the cochlear wall located at

y ¼ a, as shown in Fig. 5(a). The boundary conditions specify a uniform velocity V ¼ o� across the vertical inlet and

outlet surfaces located at x ¼ 0 and 2L, yielding the flow rate Q ¼ Va ¼ o�a. The pressure is assumed to be zero at the

helicotrema located at x ¼ L, and the membrane displacement is assumed to be anti-symmetric with respect to x ¼ L.

Fig. 5(b) explains that, in fact, the serial model emulates a fictitious anti-symmetric arrangement by ensuring that the

membrane amplitude is zero at the helicotrema.

Allen (1977) developed a boundary-integral formulation using a Green’s function that satisfies the no-penetration

boundary condition at the horizontal planes y ¼ 0, y ¼ a, and at the vertical plane x ¼ 0, and takes the value of zero

over the mid-plane located at x ¼ L. To derive this Green’s function in a broader framework, we consider the potential

F due to a point sink of unit strength located at an arbitrary point x0 and a point source of unit strength located at

another arbitrary point x1, both placed inside a rectangular domain bounded by four walls located at x ¼ w1,
x

a

V V
HelicotremaStapes

Round Window

Basilar membrane

x

a

V V
HelicotremaStapes

Round Window

Basilar membrane L

L

a

y

Round Window

2L

2L

Stapes

(a)

(b)

Fig. 5. (a) Illustration of the serial cochlea model where the scala tympani is unfolded and placed next to the scala vestibuli. (b) The

serial model emulates an anti-symmetric arrangement by ensuring that the membrane amplitude is zero at the helicotrema.
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Fig. 6. (a) Potential and associated velocity vector field due to a point sink and a point source in a rectangular domain enclosed by four

walls. (b) Green’s function and associated gradient field of the serial cochlear model.
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x ¼ w24w1, y ¼ w3, and y ¼ w44w3. Using the method of images, we find

Fw1 ;w2 ;w3 ;w4
ðx; x0; x1Þ ¼

x� ðw3 þ w4Þ=2

h
þ
X1

p¼�1

½Gw1 ;w2 ;w3þ2pwðx; x0 þ 2pwexÞ

� Gw1 ;w2 ;w4þ2pwðx; x1 þ 2pwexÞ�, (68)

where h ¼ w2 � w1, w ¼ w4 � w3, ex is the unit vector along the x axis, and the strip Green’s function G is given in (43).

A graph of this potential and corresponding velocity vector field for a sample configuration is shown in Fig. 6(a).

The Green’s function of the cochlear model adopted by Allen (1977) arises by setting w1 ¼ 0, w2 ¼ a, w3 ¼ 0, and

w4 ¼ 2L, yielding h ¼ a, w ¼ 2L, and

Gðx; x0Þ ¼ F0;a;0;2Lðx; x0; x
R
0 Þ, (69)

where xR
0 ¼ ð2L� x0; y0Þ is the reflection of the singular point x0 with respect to the helicotrema. Explicitly,

Gðx; x0Þ ¼
x� L

a
þ
X1

p¼�1

½G0;a;4pLðx; x0 þ 4pLexÞ � G0;a;2Lþ4pLðx; x
R
0 þ 4pLexÞ�. (70)

A graph of this Green’s function and corresponding gradient field for a sample location of the singular point is shown in

Fig. 6(b). For the large aspect ratio L=a of present interest, retaining only one term in the sum corresponding to p ¼ 0 is

sufficient for achieving accuracy up to the sixth decimal.



ARTICLE IN PRESS
C. Pozrikidis / Journal of Fluids and Structures 24 (2008) 336–365350
Now applying Green’s third identity for the flow in the left compartment of Fig. 5(a) and implementing the kinematic

condition qP=qy ¼ ro2F along the membrane and the kinematic condition qP=qx ¼ �iroV along the stapes footplate,

we derive the counterpart of the integral representation (48) for the total pressure amplitude,

Pðx0Þ ¼ �ro2

Z L

0

Gðx;x0ÞFðxÞdxþ iroV

Z a

0

Gðx; x0Þdy. (71)

The first integral is computed along the basilar membrane located at y ¼ 0, and the second integral is computed along

the stapes located at x ¼ 0. A missing factor of two in Allen’s (1977) formulation is noted in Allen and Sondhi (1979,

footnote 2). The second integral in (71) represents the potential due to a uniform distribution of point sinks along the

stapes, complemented by a uniform distribution of point sources along the oval window, and is thus equal to L� x0

independent of a. Moving the field point x0 to the basilar membrane, setting V ¼ o�, Pðx0;oÞ ¼ 1
2
½P�ðx0Þ ¼ �

1
2
FF , and

rearranging, we derive the integral equation

1

2
Fðx0;oÞF ðx0Þ ¼ ro2

Z L

0

Gðx; x0ÞF ðxÞdx� iro2�a
L� x0

a
. (72)

The dimensionless form of (72) is the counterpart of (55),Z L̂

0

Gðx; x0Þzðx̂Þdx̂�
1

2
F̂ðx0;oÞzðx0Þ ¼ i

L̂� x̂0

â
, (73)

where L̂ ¼ L=L, â ¼ a=L, and the stapes footplate length in the definition of z has been set to d ¼ a. To explain the

different factors 1
2
and 1

4
in front of the second terms on the left-hand sides of (73) and (55), we note that, as x! x0, G

tends to�ð1=2pÞ ln jx� x0j, whereas G tends to �ð1=pÞ ln jx� x0j due to presence of an image system across the basilar

membrane.

To be more specific, we truncate the sum in (70) after one term corresponding to p ¼ 0, and substitute (43) to find

Gðx; x0Þ ’
x� L

a
þ 2Gðx; x0Þ þ

1

p
log sinh

pð2L� xþ x0Þ

2a
� sinh

pð2L� x� x0Þ

2a

���� ����, (74)

where Gðx; x0Þ is given in (56). Far from the helicotrema, 2L� xþ x0b0, and 2L� x� x0b0, this expression simplifies

to

Gðx; x0Þ ’ 2Gðx; x0Þ þ
L

a
�

2

p
log 2. (75)

Solving for Gðx; x0Þ, substituting in (55), and using (60), we findZ L̂

0

Gðx; x0Þzðx̂Þdx̂�
1

2
F̂ðx0;oÞzðx0Þ ¼ i

L

a
�

2

p
log 2þ 2

Z L̂

0

Gðx; x0Þ
q
qŷ
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx̂

" #
. (76)

Eq. (58) shows that the ratio of the right-hand sides of (73) and (76) tends to unity far from the stapes and far from the

helicotrema, yielding similar solutions.

In summary, the key features of the serial cochlea model are that the oval and round window move with a uniform

velocity across the cochlea partitions, and the basilar membrane displacement is zero at the helicotrema.
6. Consistent rectangular cochlear model

In the most complete formulation, we allow for the presence of the helicotrema and regard the scala vestibuli and

scala tympani as a contiguous medium. The pressure field is reconstructed in terms of the potential F defined in (68),

yielding the counterpart of (31),

P ¼ iorQFw1 ;w2 ;w3 ;w4
ðx; xsrc;xsnkÞ þ P0. (77)

For simplicity, heretoforth we omit the subscripts w1 � w4. Next, we choose two points x0 and x1 inside the scala

vestibuli or scala tympani, and apply Green’s third identity to obtain the counterpart of (45),

P0ðx0Þ ¼ P0ðx1Þ þ

Z L

0

½P0�ðxÞ
qFðx; x0; x1Þ

qy
dx, (78)
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where the integral is computed along the length of the basilar membrane. Taking the derivative of (78) with respect to y0
while holding x1 constant, we find

qP0

qy0
ðx0Þ ¼

Z L

0

½P0�ðxÞ
q2Fðx; x0; x1Þ

qyqy0
dx. (79)

Now we take the limit as x0 tends to B and substitute the kinematic and dynamic boundary conditions (34) and (35) to

derive a hypersingular integral equation for the shape function, F,

Fðx;oÞF ðxÞ
q2Fðx; x0;x1Þ

qyqy0
dxþ ro2F ðx0Þ ¼ iroQFðx; xsrc; xsnkÞ. (80)

The associated dimensionless form is

F̂ðx;oÞzðxÞ
q2Fðx;x0; x1Þ

qŷqŷ0
dx̂þ ro2zðx0Þ ¼ iFðx; xsrc; xsnkÞ. (81)

This formulation is attractive in that the integral equation (81) applies independently of the position of the basilar

membrane. In practice, the evaluation of the hypersingular integral fails at the end of the solution domain due to the

singular nature of potential flow around a flat plate. A more sophisticated analysis that incorporates the presence of

Stokes boundary layers is necessary.
7. Numerical methods

The solution of the integral equations for the rectangular models discussed in previous sections was found by dividing

the solution domain, 0oxoL, into N evenly spaced segments, and applying point collocation at the segment mid-

points, xM
i , where i ¼ 1; . . . ;N.

The discretized integral equations (50) and (51) for the semi-infinite cochlear model read

XN

j¼1

Aijzj þ
XN

j¼1

1

2
dij � Bij

� �
P̂
0

j ¼ i
XN

j¼1

AijðGðx
M
j ; xsrcÞ � GðxM

j ; xsnkÞÞ (82)

and

XN

j¼1

1

2
dij þ Bij

� �
F̂jzj þ P̂

0

i ¼ 0, (83)

for i ¼ 1; . . . ;N, where zj , P̂
0

j , and F̂j are the dimensionless membrane amplitude, upper surface pressure, and response

function at the center of the jth interval, dij is Kronecker’s delta, and we have defined the influence coefficients

Aij ¼

Z xjþ1

xj

Gðx; xM
i Þdx̂; Bij ¼

qGðx; xM
i Þ

qy
dx. (84)

The integrals in (84) are computed using the six-point Gauss–Legendre quadrature. The logarithmic singularity

exhibited by the Green’s function is subtracted off and integrated analytically over the singular elements. Because the

solution domain is a straight line, a singularity does not appear in the kernel of the principal value of the double-layer

integral, Bij . The algebraic equations (82) and (83) are compiled in a linear system, where the unknown solution vector

contains the element values, zj and P̂
0

j .

The discretized integral equation (55) for the semi-infinite model with the membrane located mid-way between the

upper and lower walls reads

XN

j¼1

Aij �
1

4
F̂ðxM

i ;oÞdij

� �
zj ¼ i

XN

j¼1

AijðGðx
M
j ; xsrcÞ � GðxM

j ; xsnkÞÞ, (85)

for i ¼ 1; . . . ;N, yielding a linear system for the element values, zj .
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The weakly singular integral equation of the serial cochlear model is treated by similar methods. To solve the

hypersingular integral equation (62), we evaluate the hypersingular integrals over the straight segments using the

method discussed at the end of Section 4.2.

The solution of the derived complex linear systems of equations was found by the method of LU decomposition

embedded in Matlab. The computational cost for each case study is a few minutes of CPU time on a personal computer.

As long as the computed wave packet is far from the helicotrema, results based on the formulation with the weakly

singular integral equations are in excellent agreement with those based on the formulation with the hypersingular

integral equation. When the wave packet reaches the helicotrema, the hypersingular formulation exhibits a slow

convergence with respect to the number of boundary elements due to strong end-effects. Unless stated otherwise, all

results presented in the remainder of this paper are based on the weakly singular formulation with the semi-infinite

model. The accuracy will be demonstrated in the next section by case-study solutions.
8. Frequency-domain response

In this section, we discuss the membrane response in the frequency domain for different membrane response

functions, compare the results with previous analytical and numerical solutions, and perform parametric investigations

to demonstrate the effect of the various system parameters.

8.1. Inertialess membrane

We begin by considering the oscillations of the membrane subject to the membrane response function

Fðx;oÞ ¼ s0e
�lðx�xrÞð1þ iobÞ, (86)

and set the characteristic length equal to the channel width, L ¼ h ¼ 2a. The solution of the integral equations derived

in the previous sections depends on four dimensionless parameters,

ŝ0 �
s0b

2

rh
;

xr

h
; lh; ob. (87)

When ŝ0 ¼ 0, the basilar membrane is a passive material surface oscillating under the influence of the flow

generated by the point source and point sink. The motion describes a standing wave whose peak amplitude is

near these singularities. As the value of ŝ0 is raised, the membrane elastic properties become increasingly important,

the membrane vibration describes a traveling wave, and the peak amplitude of the wave envelop moves farther

into the cochlea.

Fig. 7(a–d) shows numerical solutions for ŝ0 ¼ 2:5� 10�8 and lh ¼ 4
7
, computed with the semi-infinite cochlear model

for xr=h ¼ 30, domain truncation level x=h ¼ 20, and N ¼ 256 intervals. The point source is located at xsrc ¼ 0:01h,

ysrc ¼ 0:25h, the point sink is located at xsrc ¼ 0:01h, ysrc ¼ �0:25h, and the basilar membrane is located at the channel

centerline, yb ¼ 0. The solution describes a wave packet consisting of a sinusoidal wave whose wave length decreases

exponentially with downstream position, x. As the dimensionless frequency b is raised, the peak of the wave packet is

shifted toward the beginning of the basilar membrane, and the number of waves contained in the envelop becomes

smaller. Fig. 7(e, f) confirms that the predictions of the hypersingular formulation are in excellent agreement with those

of the weakly singular formulation.

Fig. 7(g, h) shows the predictions of the serial cochlea model discussed in Section 5. Even though the driving

mechanism is attributed to a piston-like motion of the stapes and round window, the results are remarkably similar to

those of the point source model. This comparison underscores the insignificance of the precise location of the source

driving the fluid motion after a periodic state has been established. In Section 9, we shall see that this not necessarily the

case for a more general time-dependent response.

Fig. 8 illustrates the convergence of the numerical solution with respect to the number of intervals for the most

demanding low-frequency computation, ob ¼ 0:05, and for a medium-frequency computation, ob ¼ 0:20. In the first

case, increasing the number of intervals captures a higher number of waves at the downstream side of the envelop, but

has a small effect on the upstream side of the wave. In the second case, the computation with N ¼ 128 intervals is able

to capture with good accuracy the whole waveform. Changing the parameter xr causes a mere shift in the location of the

peak without drastically altering the overall wave form, as shown in Fig. 9 for ob ¼ 0:5 and xr=h ¼ 35 or 40.

LeVeque et al. (1985) considered the vibration of the basilar membrane far from the stapes and round window

in an infinite domain extending over �1oxo1, under assumptions similar to those adopted in the present model.
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Fig. 7. Real part (solid lines), imaginary part (dashed lines), and magnitude (dotted lines) of the membrane vibration amplitude for

ŝ0 ¼ 2:5� 10�8, lh ¼ 4=7, xr=h ¼ 30, and (a–d) ob ¼ 0:05, 0.1, 0.2, and 0.5. (e, f) Corresponding results with the hypersingular

formulation for ob ¼ 0:2 and 0.5. (g, h) Corresponding results with the serial cochlear model for ob ¼ 0:2 and 0.5.
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Their analysis demonstrated that the Fourier transform of the basilar membrane amplitude function,

F̂ ðxÞ �
Z 1
�1

F ðxÞ e�2pixx dx, (88)
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satisfies the functional equation

F̂ ðxÞ ¼ K̂ðxÞF̂ x�
li
2p

� �
, (89)

where K̂ðxÞ � ax tanhð2paxÞ and a ¼ ðps0Þ=ðro2Þð1þ iobÞ. As the channel semi-width a tends to infinity, K̂ðxÞ ! ajxj.
By numerically inverting the Fourier transform, the authors displayed numerical results for ŝ0 ¼ 2:5� 10�8, lh ¼ 4

7
, and

three reduced frequencies ob ¼ 0:05, 0.1, and 0.2. Moreover, the authors provided asymptotic estimates for the location

of the peak and rates of the decay far from the peak.

The graphs shown in Fig. 7(a–c) are remarkably similar to those shown in the second column of Fig. 1 of LeVeque et

al. (1985). We find that the amplitude of the wave peaks at approximately xp=h ’ 13, 9, and 6, respectively, for

ob ¼ 0:05, 0.01, and 0.2, corresponding to lðxp � xrÞ ¼ ð
4
7
Þðxp � xrÞ=h ’ �9:7, �12:0, and �13:7. LeVeque et al. (1985)

in their Table 1 cite values that can be transformed to yield lðxp � xrÞ ¼ �9:8, �11:7, and �13:6. These are in excellent
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agreement with the present numerical results, even though our model explicitly accounts for the presence of a point

source and a point sink. To explain this remarkable agreement, we recast the integral equation (54) into the form

1

4
s0ð1þ iobÞ e�lx0F ðx0Þ ¼ o2r

Z 1
�1

Gðx� x0ÞF1ðxÞdx, (90)

where

F1ðxÞ ¼ F ðxÞ �
iQ

o
q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞ; (91)

the x axis has been shifted so that xr ¼ 0, and the domain of integration has been extended over the whole of the x axis

under the assumption that F ðxÞ decays rapidly far from the shifted origin. Taking the Fourier transform with respect to

x and using the convolution theorem, we find

1

4
s0ð1þ iobÞF x�

li
2p

� �
¼ o2rL̂ðxÞF̂1ðxÞ, (92)
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Fig. 10. (a) Amplitude of the traveling wave plotted against distance on a logarithmic scale, and (b) corresponding phase for

frequencies f ¼ 0:5 (dashed line), 1, 2, 3, 5, 8, 10 kHz. (c, d) Effect of the basilar membrane position across the cochlear channel on (c)
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where L̂ðxÞ is the Fourier transform of the Green’s function regarded as a tempered distribution (LeVeque et al., 1985).

Neglecting as a first approximation the presence of the walls, we use the logarithmic kernel Gðx� x0Þ ’ �ð1=2pÞ log jx� x0j

and set L̂ðxÞ ¼ 1=ð4pjxjÞ to obtain a functional equation that is identical to that shown in (89). To account for the presence of

the upper and lower walls, we use the modified kernel Gðx� x0Þ ¼ �ð1=2pÞ log j sinh pðx� x0Þ=2aj, and deduce that its

inverse Fourier transform is given by L̂ðxÞ ¼ a=ð4pK̂ðxÞÞ.

8.2. General membrane response

Next, we consider the more realistic membrane response function expressed by (29), refer to dimensional units in the

CGI system, and adopt the physiological values

c ¼ 1:72� 109 e�2x dyn=cm3; k ¼ 1:20� 103 e�x dyn s=cm3; m ¼ 0:143 g=cm2, (93)

where the distance x is measured in cm. Kagawa et al. (1987) found that these values yield the least disagreement with

Rhode’s (1971) laboratory data. The half-depth of the cochlear channel is a ¼ 0:1 cm, and the density of the perilymph

is taken to be equal to that of water, r ¼ 1 g=cm3. Fig. 10(a, b) shows the amplitude and phase of the membrane
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vibration amplitude, z, for frequencies f ¼ 0:5 (dashed line), 1, 2, 3, 5, 8, and 10 kHz. The characteristic length L in the

definition of z is set equal to 1 cm. The near-discontinuity in each curve marks the end of the envelop of the traveling

wave. Note that the amplitude is plotted against distance on a semi-logarithmic scale and expressed in decibels. In this

calculation, the point source is located at xsrc ¼ 0:01 cm, ysrc ¼ 0:05 cm, the point sink is located at xsnk ¼ 0:01 cm,

ysnk ¼ �0:05 cm, and the basilar membrane is located at the channel centerline, yb ¼ 0.

The results are in qualitative agreement with those presented in Kagawa et al. (1987, Fig. 6) obtained by a finite

element method that relies on a variational formulation to implement the action of the stapes and round window. In the

model of Kagawa et al. (1987), the stapes and round window occupy the whole channel cross-section at the left wall,

both vibrating with a uniform prescribed velocity. Quantitative differences between the present and previous results are

observed at the end of the envelop of the traveling wave. Unfortunately, Kagawa et al. (1987) do not discuss the

discretization level and accuracy of their finite element solutions.

Additional simulations have revealed that the predicted membrane oscillations depend only weakly on the assumed

position of the point source and point sink, as well as on the lateral position of the membrane across the cochlear

channel. Fig. 10(c, d) shows the effect of the basilar membrane position on the amplitude and phase of the vibration for
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Fig. 14. Membrane vibrations induced by a dipole emulating the rocking motion of the stapes. (a) Amplitude of the traveling wave

plotted against distance on a logarithmic scale, and (b) corresponding phase for frequencies f ¼ 0:5 (dashed line), 1, 2, 3, 5, 8, and

10 kHz. Numerical noise arises in the high-frequency solution.
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C. Pozrikidis / Journal of Fluids and Structures 24 (2008) 336–365358
frequency f ¼ 5kHz. The point source is located at xsrc ¼ 0:01 cm, ysrc ¼ 0:09 cm, the point sink is located at

xsnk ¼ 0:01 cm, ysnk ¼ �0:09 cm, and the basilar membrane is located at yb ¼ 0, 0.04, 0.06, and 0.08 cm. Comparing

these graphs with the corresponding graphs for f ¼ 5kHz shown in Fig. 10(a, b) reveals the weak effect of the precise

location of the singularities. Fig. 11 illustrates the structure of the traveling wave for yb ¼ 0 and 0.08 cm, where

noticeable but not drastic differences can be identified.

Laboratory experiments have measured the vibration of a basilar membrane at a fixed location as a function of the

vibration frequency (von Békésy, 1960; Rhode, 1971). Fig. 12 shows a graph of the vibration amplitude and phase

predicted by the present boundary-integral formulation at three locations x ¼ 1, 2, and 3 cm, plotted against the

vibration frequency, for yb ¼ 0. A comparison with Rhode’s data reported in Zweig et al. (1976, Fig. 4) reveals similar

qualitative trends but noticeable quantitative differences in one of the two graphs. Similar discrepancies were noted by

previous authors and attributed to a number of reasons, including the nonlinear response of the basilar membrane at

the high excitation levels applied in the laboratory studies.

All results presented thus far were obtained using the Kagawa et al. (1987) value for the effective surface density of

the basilar membrane system, m ¼ 0:143 g=cm2. This effective density includes the mass of the endolymph contained

between the vestibular and basilar membrane. To demonstrate the significance of the membrane mass, in Fig. 13 we

present the membrane response at the frequency f ¼ 5kHz for a series of membrane densities, keeping the membrane

stiffness, c, and viscous resistance coefficient, k, constant. We see that, as the membrane density increases, the location
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of the peak of the response curve is shifted toward the oval window, while the maximum amplitude remains nearly

constant. Significant changes in the shape of the response curves are observed when the membrane inertia dominates.

We conclude that the membrane mass is an important determinant of the basilar membrane vibration.

The stapes footplate may exhibit a rocking motion in a addition to the piston-like vibration. The effect of the rocking

motion may be represented by a point source dipole superposed on the point source. In our model, we simply add a

point sink with appropriate strength near the point source in the scala vestibuli. In one extreme case, we translate the

point sink emulating the vibration of the round window. The cochlear response due to the resulting dipole is illustrated

in Fig. 14. The rocking motion generates traveling waves whose peak amplitude is significantly smaller than that

induced by the piston-like displacement.

Fig. 15 compares results obtained using the semi-infinite parallel cochlea model (solid lines) or the serial model

(broken lines). The latter requires that the membrane vibration amplitude is zero at the helicotrema, whereas the former

allows for a free motion. At the frequency f ¼ 500Hz, the peak of the wave packet is located sufficiently far from the

helicotrema, and the two models predict virtually identical behavior. Significant differences are observed at the lower

frequency 100Hz. The parallel model predicts a traveling wave whose amplitude reduces to zero at a node located at

x ’ 2:75 cm. Another traveling wave is established thereafter, as illustrated in Fig. 15(c). These comparisons underscore

the importance of the downstream boundary condition in the low-frequency acoustic cochlea response.
9. Initial-value problem

The formulation for oscillatory flow in the frequency domain discussed in previous sections can be extended to a

general time-dependent response corresponding to an arbitrary time-dependent vibration of the stapes and

corresponding vibration of the round window. Assume that the stapes displacement normal to itself is given by

�IðtÞ, where t ¼ ot, the inverse of o defines a time scale, and IðtÞ is an arbitrary function. The strength of the point

source generating the flow is

qðtÞ ¼ o�dJðtÞ, (94)

where J ¼ dI=dt, and d ¼ A=b is the effective length of the stapes footplate.

When the basilar membrane is located at the channel centerline, yb ¼ 0, the counterpart of the integral representation

(54) provides us with an expression for the pressure jump across the membrane as a function of position and time,

1

4r
½p�ðx0; tÞ ¼

Z 1
0

Gðx� x0Þf ttðxÞdxþ
dq

dt

Z 1
0

Gðx� x0Þ
q
qy
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx. (95)

Combining this equation with the membrane response function (23), substituting (94), and rearranging, we derive the

integro-differential equation

1

4ro2�d
Cðf ; f xx; f xxxx; f t; f ttÞ ¼ �

Z 1
0

Gðx� x0ÞfttðxÞdx̂

�
dJ

dt

Z 1
0

Gðx� x0Þ
q
qŷ
ðGðx;xsrcÞ � Gðx; xsnkÞÞdx̂, (96)

where f ¼ fL=ð�dÞ is the dimensionless membrane displacement, and L is a specified length scale. A similar equation

was derived by Allen and Sondhi (1979) for a spatially periodic flow model, by Diependaal and Viergever (1989) for the

serial cochlear model, and by Mammano and Nobili (1993) and Nobili and Mammano (1996) for more general

configurations. The last authors refer to the first and second term on the right-hand side of (96), respectively, as the

basilar membrane forcing term and the stapes forcing term, and compute the Green’s function for arbitrary geometries

by approximation. When JðtÞ ¼ expðitÞ and f ðx; tÞ ¼ F ðxÞ expðitÞ, Eq. (96) reduces to the frequency-domain integral

equation (54).

9.1. Inertialess membrane

To be more specific, we adopt the membrane response function (24), set the length scale equal to the channel width,

L ¼ h, and rearrange to findZ 1
0

Gðx� x0ÞfttðxÞdx̂ ¼ �
ŝ0

4o2b2
e�lðx�xrÞðfþ obftÞ �

dJ

dt

Z 1
0

Gðx� x0Þ
q
qŷ
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx̂. (97)
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Fig. 16. Transient response of an inertialess membrane for ob ¼ 0:5, ŝ0 ¼ 2:5� 10�8, lh ¼ 4
7
, and xr=h ¼ 30, at times ot=ð2pÞ ¼ 1, 3,

7, 20 and 35, subject to (a) a single-period sinusoidal impulse, and (b) a persistent sinusoidal forcing applied at the origin of time.
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Given f and ft, we obtain an integral equation of the first kind with a weakly singular logarithmic kernel for the

acceleration, ftt. The solution can be found using the numerical method similar to those described in previous sections,

yielding the function

ftt ¼ Fðf;ftÞ. (98)

The evolving shape of the membrane may then be reconstructed by numerically integrating this second-order linear

ordinary differential equation subject to the initial condition f ¼ 0 and ft ¼ 0, requiring Jð0Þ ¼ 0. In our simulations,

we use the second-order Runge–Kutta method.

Fig. 16(a) shows results of a simulation for a single-period sinusoidal impulse described by

JðtÞ ¼
sin t for 0oto2p;

0 for t42p:

�
(99)

Other parameters are ob ¼ 0:5, ŝ0 ¼ 2:5� 10�8, lh ¼ 4=7, xr=h ¼ 30, domain truncation level x=h ¼ 20, N ¼ 256

divisions, and time step oDt ¼ 0:01. The point source is located at xsrc ¼ 0:01h, ysrc ¼ 0:25h, and the point sink is

located at xsnk ¼ 0:01h, ysnk ¼ �0:25h. The illustrations reveal the formation of a solitary wave packet consisting of

several peaks traveling from the stapes to the helicotrema. The propagation speed decreases as the packet approaches

the helicotrema. The frequency content and width of the packet increase, while its amplitude decreases during the

propagation.

Fig. 16(b) shows the results of a simulation for the same conditions, but for a permanent sinusoidal forcing function,

JðtÞ ¼ sin t for t40. The illustrations reveal the formation of a dual wave packet consisting of a time-periodic packet

similar to that described in Fig. 7(d) in the frequency domain centered near the stapes, and a traveling packet similar to

that described in Fig. 16(a). The second packet is expected to reach the helicotrema and exit the computational domain

after a few hundred cycles of oscillation, leaving the stationary wave packet alone. It is interesting that the amplitude of

the traveling packet increases during the propagation due to the continuous stapes forcing.

9.2. General case

Next, we adopt the general membrane response function (28) and work in similar ways to derive an integral equation

of the second kind for ftt,Z 1
0

Gðx; x0ÞfttðxÞdx̂þ
mðx0Þ

4rL
ftt ¼ �

1

4rL
ðcðx0Þfþ kðx0ÞoftÞ

�
dJ

dt

Z 1
0

Gðx; x0Þ
q
qŷ
ðGðx; xsrcÞ � Gðx; xsnkÞÞdx̂. (100)

The solution for the acceleration, ftt, can be found using the numerical methods discussed earlier. We will work with

dimensional variables and set the characteristic length scale L ¼ 1 cm.

Fig. 17(a) shows the results of a simulation for a single-period sinusoidal impulse with frequency f ¼ 5 kHz,

conducted with domain truncation level x ¼ 3:5 cm, and N ¼ 256 divisions. The snapshots reveal the formation of a

traveling wave packet similar to that described in Fig. 16(a). As in the previous case, the frequency content and width of

the packet increase, while the amplitude of the packet decreases during the propagation. In this case, it takes

approximately 10ms for the packet to reach the helicotrema. Fig. 17(b) shows the results of a corresponding simulation

with a permanent sinusoidal forcing, JðtÞ ¼ sin t for t40. The illustrations reveal the formation of a stationary wave

packet similar to that described in Fig. 11(a) in the frequency domain, and a traveling wave packet similar to that shown

in Fig. 17(a). The amplitude of the traveling packet increases only slightly during the propagation due to the continuous

stapes forcing. Physically, the results suggest that the start-up period due to a pure-tone input at 5 kHz lasts for

approximately 10ms. To demonstrate the effect of the length solution domain, in Fig. 17(c) we present a simulation that

duplicates that shown in Fig. 17(b) with a longer domain, L ¼ 5:0 cm. Side-by-side comparison reveals that, while the

tail-end of the solution is affected by the solution domain, the general features of the wave train remain the same.

Similar results were obtained for a broad range of frequencies.

The counterpart of the integral equation (100) for the serial cochlear model isZ L̂

0

Gðx; x0ÞfttðxÞdx̂þ
mðx0Þ

2rL
ftt ¼ �

1

2rL
ðcðx0Þfþ kðx0ÞoftÞ �

dJ

dt
L� x0

a
, (101)

where the stapes footplate length has been set equal to the scala width, d ¼ a. Fig. 18 shows the results of

two simulations duplicating those presented in Fig. 17(a), (b). The amplitude of the developing wave packet shown in
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Fig. 17. Traveling and waves at times ft ¼ 1, 3, 7, 15 and 30, subject to (a) a single-period sinusoidal impulse, and (b, c) a persistent

sinusoidal forcing applied at the origin of time. In both cases, the forcing frequency is f ¼ 5kHz.
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Fig. 18. Same as Fig. 17(a, b), but for the serial cochlear model.
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Fig. 18(a) is larger than that shown in Fig. 17(a) due to the stronger action of the stapes and round window. Eventually,

the packet disappears as it enters the helicotrema to join its mirror-image on the other side. The transient evolution

illustrated in Fig. 18(b) is notably different from that shown in Fig. 17(b), and the approach to the periodic state takes
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a much longer time. These comparisons indicate that the precise mechanism driving the flow and the assumed

conditions at the helicotrema have a significant influence on the transient vibrations.
10. Discussion

We have formulated a two-dimensional cochlear model that uses a point source and a point sink to emulate the

action of the stapes footplate and round window, and developed a boundary-integral formulation to describe the

induced potential flow and vibration of the basilar membrane. The physical model and integral formulation improve

and generalize those developed by previous authors based on the serial cochlear model. The derived integral equations

were solved accurately and efficiently using elementary numerical methods to describe the structure of traveling waves

on the basilar membrane for an arbitrary membrane response function. The numerical results were confirmed to be

consistent with those obtained by previous authors using functional analysis and finite element implementations. The

simulations illustrated the detailed structure of the basilar wave packet and demonstrated that the general features of

the membrane oscillation are mildly sensitive to the position of the oval and round window and position of the basilar

membrane across the cochlear channel.

We have presented results both in the frequency and time domain. In the initial-value problem, the basilar membrane

acceleration is found by solving an integral equation whose nature depends on the assumed membrane mechanical

response. Numerical solutions for a single-period sinusoidal impulse revealed the formation of a traveling wave packet

which eventually disappears at the helicotrema. Numerical solutions for a permanent wave demonstrated the transient

dynamics during the initial start-up period.

We have considered passive and linear membrane models where the mechanical properties of the membrane are

independent of the basilar membrane vibration amplitude and load, and thus of the excitation of the hair cells residing

inside the basilar membrane. It is generally accepted that the passive model cannot explain the extreme sensitivity and

frequency selectivity of the cochlea, and it is believed that some kind of internal amplification leading to nonlinear

response must take place. Neely and Kim (1983) introduced the first linear active cochlear model expressing negative

damping. In their simulations, the membrane oscillations computed from the passive model drive a subordinate spring-

mass-damper subsystem representing the response of the stereocilia of the outer hair cells.

More sophisticated models are reviewed by Lim and Steele (2002). In a typical active cochlea model, the balance

equation (23) is replaced by

ptðl; tÞ � ½p�ðl; tÞ þ pcðl; tÞ ¼ �Cðf ; f ll ; f llll ; f t; f ttÞ, (102)

where pt is the total surface force (membrane load), and pc is an effective downward surface force due to the outer hair

cells. The latter can be related to the total membrane load using the relation

pc ¼ aðptÞpt, (103)

where a is the feed-forward gain factor. Thus,

½p� ¼ ð1� aÞpt ¼ �ð1� aÞCðf ; f ll ; f llll ; f t; f ttÞ. (104)

In the context of the present formulation, implementing an active membrane response results in a system of nonlinear

integral equations that must be solved by iterative methods. The study of these active nonlinear systems is under current

investigation.
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von Békésy, G., 1960. Experiments in Hearing. McGraw–Hill, New York.



ARTICLE IN PRESS
C. Pozrikidis / Journal of Fluids and Structures 24 (2008) 336–365 365
Beyer, R.P., 1992. A computational model of the cochlea using the immersed boundary method. Journal of Computational Physics 98,

145–162.

Cai, H., Manoussaki, D., Chadwick, R., 2005. Effects of coiling on the micromechanics of the mammalian cochlea. Journal of the

Royal Society Interface 2, 341–348.

Diependaal, R.J., Viergever, M.A., 1989. Nonlinear and active two-dimensional cochlear models: time-domain solution. Journal of the

Acoustical Society of America 85, 803–812.

Givelberg, E., Bunn, J., 2003. A comprehensive three-dimensional model of the cochlea. Journal of Computational Physics 191,

377–391.

Kagawa, Y., Yamabuchi, T., Watanabe, N., Mizoguchi, T., 1987. Finite element cochlear models and their steady state. Journal of

Sound and Vibration 119, 291–315.

Kolston, P.J., Ashmore, J.F., 1996. Finite element micromechanical modeling of the cochlea in three dimensions. Journal of the

Acoustical Society America 99, 455–467.

Lesser, M.B., Berkley, D.A., 1972. Fluid mechanics of the cochlea. Part 1. Journal of Fluid Mechanics 51, 497–512.

LeVeque, R.J., Peskin, C.S., Lax, P., 1985. Solution of a two-dimensional cochlea model using transform techniques. SIAM Journal on

Applied Mathematics 45, 450–464.

LeVeque, R.J., Peskin, C.S., Lax, P., 1988. Solution of a two-dimensional cochlea model with fluid viscosity. SIAM Journal on

Applied Mathematics 48, 191–213.

Lighthill, J., 1981. Energy flow in the cochlea. Journal of Fluid Mechanics 106, 149–213.

Lim, K., Steele, C.R., 2002. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing

Research 170, 190–205.

Loh, C.H., 1983. Multiple scale analysis of the spirally coiled cochlea. Journal of the Acoustical Society of America 74, 94–103.

Mammano, F., Nobili, R., 1993. Biophysics of the cochlea: linear approximation. Journal of the Acoustical Society of America 93,

3320–3332.

Manoussaki, D., Chadwick, R.S., 2000. Effects of geometry on fluid loading in a coiled cochlea. SIAM Journal on Applied

Mathematics 61, 369–386.

Manoussaki, D., Dimitriadis, E.K., Chadwick, R.S., 2006. Cochleas graded curvature effect on low frequency waves. Physical Review

Letters 96, 088701.

Neely, S.T., 1981. Finite difference solution of a two-dimensional mathematical model of the cochlea. Journal of the Acoustical Society

of America 69, 1386–1393.

Neely, S.T., Kim, D.O., 1983. An active cochlear model shows sharp tuning and high sensitivity. Hearing Research 9, 123–130.

Nobili, R., Mammano, F., 1996. Biophysics of the cochlea II: stationary nonlinear phenomenology. Journal of the Acoustical Society

of America 99, 3320–3332.

Parthasarathi, A.A., Grosh, K., Nuttall, A.L., 2000. Three-dimensional numerical modeling for global cochlear dynamics. Journal of

the Acoustical Society of America 107, 474–485.

Pozrikidis, C., 1997. Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, New York.

Pozrikidis, C., 2002. A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. Chapman & Hall/CRC

Press, Boca Raton.

Rhode, W.S., 1971. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. Journal

of the Acoustical Society of America 49, 1218–1231.

Sondhi, M.M., 1978. Method for computing motion in a two-dimensional cochlear model. Journal of the Acoustical Society of

America 63, 1468–1477.

Steele, C.R., Zais, J.G., 1985. Effect of coiling in a cochlear model. Journal of the Acoustical Society of America 77, 1849–1852.

Taber, L.A., Steele, C.R., 1981. Cochlear model including three-dimensional fluid and four models of partition flexibility. Journal of

the Acoustical Society of America 70, 426–438.

Viergever, M.A., 1977. A two-dimensional model for the cochlea: II. The heuristic approach and numerical results. Journal of

Engineering Mathematics 11, 11–28.

Viergever, M.A., 1978. Basilar membrane motion in a spiral-shaped cochlea. Journal of the Acoustical Society of America 64,

1048–1063.

Viergever, M.A., Kalker, J.J., 1975. A two-dimensional model for the cochlea: I. The exact approach. Journal of Engineering

Mathematics 9, 353–365.

Zweig, G., Lipes, II., Pierce, J.H., 1976. The cochlear compromise. Journal of the Acoustical Society of America 59, 975–982.


	Boundary-integral modeling of cochlear hydrodynamics
	Introduction
	Cochlear hydrodynamics
	A two-dimensional cochlear model
	Membrane response function
	Boundary-integral formulation

	Semi-infinite cochlear model
	Membrane at the channel centerline
	Hypersingular formulation

	Serial cochlear model
	Consistent rectangular cochlear model
	Numerical methods
	Frequency-domain response
	Inertialess membrane
	General membrane response

	Initial-value problem
	Inertialess membrane
	General case

	Discussion
	Acknowledgment
	References


